Modeling Energy Gap of Doped Tin (II) Sulfide Metal Semiconductor Nanocatalyst Using Genetic Algorithm-Based Support Vector Regression

نویسندگان

چکیده

Tin (II) sulfide (SnS) is a metal chalcogenide semiconducting material with fascinating and admirable physical features for practical applications in solid-state batteries, photodetectors, gas sensors, optoelectronic devices, emission transistors, photocatalysis among others. The energy gap of SnS semiconductor nanomaterial that facilitates its usefulness many can be adjusted through dopant incorporation which results crystal lattice distortion at various crystallite sizes the semiconductor. This work employs parameter descriptors to develop hybrid genetic algorithm (GA) support vector regression (SVR) intelligent model determining doped semiconductors. predictive strength developed GA-SVR compared stepwise algorithm- (STRA-) based using different performance evaluation parameters. performs better than STRA on root mean square error, absolute correlation coefficient improvement 70.68%, 67.63%, 20.98%, respectively, testing set data. Influence dopants experimental conditions were investigated model, while obtained values gaps agree measured values. models demonstrate high degree potentials terms accuracy, precision, ease implementation fosters their real-life applicability estimating stress circumvention.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antimony-doped Tin(II) Sulfide Thin Films

Thin-film solar cells made from earth-abundant, inexpensive, and non-toxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin monosulfide (SnS) is a promising candidate for making absorber layers in scalable, inexpensive, and non-toxic solar cells. SnS has always been observed to be a p-type semiconduc...

متن کامل

Prediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron

Prediction of daily evaporation is a valuable and determinant tool in sustainable agriculture and hydrological issues, especially in the design and management of water resources systems. Therefore, in this study, the ability of artificial intelligence models of multi-layer perceptron (MLP), support vector regression (SVR), and the hybrid model of support vector regression-firefly optimization a...

متن کامل

STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES

Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P

متن کامل

Prediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system

Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...

متن کامل

Prognosis of multiple sclerosis disease using data mining approaches random forest and support vector machine based on genetic algorithm

Background: Multiple sclerosis (MS) is a degenerative inflammatory disease which is most commonly diagnosed by magnetic resonance imaging (MRI). But, since the MRI device uses of a magnetic field, if there are metal objects in the patient's body, it can disrupt the health of the patient, the functioning of the MRI, and distortion in the images. Due to limitations of using MRI device, screening ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nanomaterials

سال: 2022

ISSN: ['1687-4110', '1687-4129']

DOI: https://doi.org/10.1155/2022/8211023